Record Information
Version1.0
StatusDetected and Quantified
Creation Date2020-12-10 18:35:58 UTC
Update Date2024-10-11 02:21:56 UTC
Metabolite IDMMDBc0000353
Metabolite Identification
Common NameAcetylglycine
DescriptionN-Acetyl-glycine or N-Acetylglycine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylglycine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylglycine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid glycine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylglycine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free glycine can also occur. In particular, N-Acetylglycine can be biosynthesized from glycine and acetyl-CoA by the enzyme glycine N-acyltransferase (GLYAT) (EC 2.3.1.13). Excessive amounts N-acetyl amino acids including N-acetylglycine (as well as N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, Nacetylmethionine and smaller amounts of N-acetylthreonine, N-acetylleucine, N-acetylvaline and N-acetylisoleucine) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618 ). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924 ). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618 ). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylglycine, are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ).
Structure
Synonyms
ValueSource
Ac-gly-OHChEBI
Acetamidoacetic acidChEBI
Aceturic acidChEBI
Acetylamino-acetic acidChEBI
Acetylaminoacetic acidChEBI
Ethanoylaminoethanoic acidChEBI
AcetamidoacetateGenerator
AcetateGenerator
Acetic acidGenerator
Acetylamino-acetateGenerator
AcetylaminoacetateGenerator
EthanoylaminoethanoateGenerator
15N-Acetylglycine a-radicalHMDB
2-AcetamidoacetateHMDB
2-Acetamidoacetic acidHMDB
Ac glyHMDB
AceturateHMDB
AcetylglycocollHMDB
N-Acetyl-glycineHMDB
N-AcetylglycineHMDB
N-Acetylglycine sodium saltHMDB
AcetylglycinateHMDB
AcetylglycineChEBI
Molecular FormulaC4H7NO3
Average Mass117.1033
Monoisotopic Mass117.042593095
IUPAC Name2-acetamidoacetic acid
Traditional Nameaceturate
CAS Registry NumberNot Available
SMILES
CC(=O)NCC(O)=O
InChI Identifier
InChI=1S/C4H7NO3/c1-3(6)5-2-4(7)8/h2H2,1H3,(H,5,6)(H,7,8)
InChI KeyOKJIRPAQVSHGFK-UHFFFAOYSA-N