Record Information
Version1.0
StatusDetected and Quantified
Creation Date2020-12-10 18:40:46 UTC
Update Date2024-10-09 17:05:58 UTC
Metabolite IDMMDBc0000570
Metabolite Identification
Common NameFlavin mononucleotide
DescriptionFlavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH), and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the 'conventional' photo receptors as the signaling state and not an E/Z isomerization. It is the principal form in which riboflavin is found in cells and tissues. It requires more energy to produce, but is more soluble than riboflavin. Flavin mononucleotide belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. Within humans, flavin mononucleotide participates in a number of enzymatic reactions. In particular, formic acid and flavin mononucleotide can be biosynthesized from FMNH2; which is catalyzed by the enzyme lanosterol 14-alpha demethylase. In addition, formic acid and flavin mononucleotide can be biosynthesized from FMNH2 through the action of the enzyme lanosterol 14-alpha demethylase. In humans, flavin mononucleotide is involved in bloch pathway (cholesterol biosynthesis). Outside of the human body, flavin mononucleotide has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), horseradish tree, black elderberries, angelica, and ostrich ferns.
Structure
Synonyms
ValueSource
Riboflavin 5'-(dihydrogen phosphate)ChEBI
Riboflavin 5'-monophosphateChEBI
Riboflavin 5'-phosphateChEBI
Riboflavin monophosphateChEBI
Riboflavin-5-phosphateChEBI
Riboflavine dihydrogen phosphateChEBI
Riboflavin 5'-(dihydrogen phosphoric acid)Generator
Riboflavin 5'-monophosphoric acidGenerator
Riboflavin 5'-phosphoric acidGenerator
Riboflavin monophosphoric acidGenerator
Riboflavin-5-phosphoric acidGenerator
Riboflavine dihydrogen phosphoric acidGenerator
FlaninHMDB
Flavine mononucleotideHMDB
FlavolHMDB
FMNHMDB
RiboflavinHMDB
Riboflavin mononucleotideHMDB
Riboflavin phosphateHMDB
Riboflavin-5'-phosphate naHMDB
Riboflavine 5'-monophosphateHMDB
Riboflavine 5'-phosphateHMDB
Riboflavine monophosphateHMDB
Riboflavine phosphateHMDB
Riboflavine-5'-phosphateHMDB
Vitamin b2 phosphateHMDB
5'-monoPhosphate, riboflavinHMDB
5'-Phosphate, riboflavinHMDB
Flavin mononucleotide sodium saltHMDB
Mononucleotide, riboflavinHMDB
Flavin mononucleotide monosodium saltHMDB
Flavin mononucleotide monosodium salt, dihydrateHMDB
Phosphate, sodium riboflavinHMDB
Riboflavin 5' phosphateHMDB
Riboflavin phosphate, sodiumHMDB
Mononucleotide, flavinHMDB
Riboflavin 5' monophosphateHMDB
Flavin mononucleotide disodium saltHMDB
Sodium riboflavin phosphateHMDB
Molecular FormulaC17H21N4O9P
Average Mass456.3438
Monoisotopic Mass456.104614802
IUPAC Name{[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}phosphonic acid
Traditional Nameriboflavin 5'-phosphate
CAS Registry NumberNot Available
SMILES
CC1=CC2=C(C=C1C)N(C[C@H](O)[C@H](O)[C@H](O)COP(O)(O)=O)C1=NC(=O)NC(=O)C1=N2
InChI Identifier
InChI=1S/C17H21N4O9P/c1-7-3-9-10(4-8(7)2)21(15-13(18-9)16(25)20-17(26)19-15)5-11(22)14(24)12(23)6-30-31(27,28)29/h3-4,11-12,14,22-24H,5-6H2,1-2H3,(H,20,25,26)(H2,27,28,29)/t11-,12+,14-/m0/s1
InChI KeyFVTCRASFADXXNN-SCRDCRAPSA-N