Showing metabocard for Uroporphyrin I (MMDBc0047777)
Record Information
Version
1.0
Status
Detected and Quantified
Creation Date
2021-11-19 15:42:10 UTC
Update Date
2024-10-09 19:43:20 UTC
Metabolite ID
MMDBc0047777
Metabolite Identification
Common Name
Uroporphyrin I
Description
Uroporphyrin is the porphyrin produced by oxidation of the methylene bridges in uroporphyrinogen. Uroporphyrins have four acetic acid and four propionic acid side chains attached to their pyrrole rings. The enzyme uroporphyrinogen I synthase catalyzes the formation of hydroxymethylbilane from four molecules of porphobilinogen. Uroporphyrinogen III cosynthase then catalyzes the conversion of hydroxymethylbilane into uroporphyrinogen III. Otherwise, hydroxymethylbilane cyclizes nonenzymatically to form uroporphyrinogen I. Uroporphyrinogen I and III yield their respective uroporphyrins via autooxidation or their respective coproporphyrinogens via decarboxylation. Excessive amounts of uroporphyrin I are excreted in congenital erythropoietic porphyria, and both uroporphyrin I and uroporphyrin III are excreted in porphyria cutanea tarda. Uroporphyrin I and III are the most common isomers. Under certain conditions, uroporphyrin I can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, porphyria cutanea tarda, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503 ).
Belongs to the class of organic compounds known as porphyrins. Porphyrins are compounds containing a fundamental skeleton of four pyrrole nuclei united through the alpha-positions by four methine groups to form a macrocyclic structure.
Geigy Scientific Tables, 8th Rev edition, pp. 130. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp. Basel, Switzerland c1981-1992.
Geigy Scientific Tables, 8th Rev edition, pp. 130. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp. Basel, Switzerland c1981-1992.
Geigy Scientific Tables, 8th Rev edition, pp. 130. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp. Basel, Switzerland c1981-1992.
Doss MO: Porphyrinurias and occupational disease. Ann N Y Acad Sci. 1987;514:204-18. doi: 10.1111/j.1749-6632.1987.tb48775.x. [PubMed:3327428 ]
Winkelman JW, Collins GH: Neurotoxicity of tetraphenylporphinesulfonate TPPS4 and its relation to photodynamic therapy. Photochem Photobiol. 1987 Nov;46(5):801-7. doi: 10.1111/j.1751-1097.1987.tb04851.x. [PubMed:3441503 ]
Oguz F, Sidal M, Bayram C, Sansoy N, Hekim N: Ocular involvement in two symptomatic congenital erythropoietic porphyria. Eur J Pediatr. 1993 Aug;152(8):671-3. doi: 10.1007/BF01955245. [PubMed:8404971 ]
Ged C, Moreau-Gaudry F, Taine L, Hombrados I, Calvas P, Colombies P, De Verneuil H: Prenatal diagnosis in congenital erythropoietic porphyria by metabolic measurement and DNA mutation analysis. Prenat Diagn. 1996 Jan;16(1):83-6. doi: 10.1002/(SICI)1097-0223(199601)16:1<83::AID-PD812>3.0.CO;2-4. [PubMed:8821859 ]
Gorchein A, Guo R, Lim CK, Raimundo A, Pullon HW, Bellingham AJ: Porphyrins in urine, plasma, erythrocytes, bile and faeces in a case of congenital erythropoietic porphyria (Gunther's disease) treated with blood transfusion and iron chelation: lack of benefit from oral charcoal. Biomed Chromatogr. 1998 Nov-Dec;12(6):350-6. doi: 10.1002/(SICI)1099-0801(199811/12)12:6<350::AID-BMC761>3.0.CO;2-B. [PubMed:9861496 ]
Ding Y, Lin B, Huie CW: Binding studies of porphyrins to human serum albumin using affinity capillary electrophoresis. Electrophoresis. 2001 Jul;22(11):2210-6. doi: 10.1002/1522-2683(20017)22:11<2210::AID-ELPS2210>3.0.CO;2-W. [PubMed:11504054 ]
Zhang W, Zhang L, Ping G, Zhang Y, Kettrup A: Study on the multiple sites binding of human serum albumin and porphyrin by affinity capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Feb 25;768(1):211-4. doi: 10.1016/s0378-4347(01)00501-1. [PubMed:11939554 ]
Bu W, Myers N, McCarty JD, O'Neill T, Hollar S, Stetson PL, Sved DW: Simultaneous determination of six urinary porphyrins using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jan 15;783(2):411-23. doi: 10.1016/s1570-0232(02)00703-1. [PubMed:12482484 ]
Sunyer J, Herrero C, Ozalla D, Sala M, Ribas-Fito N, Grimalt J, Basagana X: Serum organochlorines and urinary porphyrin pattern in a population highly exposed to hexachlorobenzene. Environ Health. 2002 Jul 19;1(1):1. doi: 10.1186/1476-069x-1-1. [PubMed:12495451 ]
Geronimi F, Richard E, Lamrissi-Garcia I, Lalanne M, Ged C, Redonnet-Vernhet I, Moreau-Gaudry F, de Verneuil H: Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med (Berl). 2003 May;81(5):310-20. doi: 10.1007/s00109-003-0438-7. Epub 2003 Apr 30. [PubMed:12721665 ]
Akhtar MK, Kaderbhai NN, Hopper DJ, Kelly SL, Kaderbhai MA: Export of a heterologous cytochrome P450 (CYP105D1) in Escherichia coli is associated with periplasmic accumulation of uroporphyrin. J Biol Chem. 2003 Nov 14;278(46):45555-62. doi: 10.1074/jbc.M212685200. Epub 2003 Aug 20. [PubMed:12930844 ]